Q.P. Code: 18HS0832

(AUTONOMOUS) B. Tech II Year I Semester Supplementary Examinations December-2021 TRANSFORM & DISCRETE MATHEMATICS			
Tim	e: 3 hours (Common to CE & AGE) Max.	Marl	ks: 60
		Ivian	x5. 00
	(Answer all the Questions $5 \times 2 = 10$ Marks)		
1.	a) Evaluate Laplace transform of $e^{at} \cosh bt$.	L5	2M
	$\int 0, -\infty < x < lpha$	L1	2M
	b) Find the Fourier transform of $f(x)$, defined by $f(x) = \begin{cases} 0, -\infty < x < \alpha \\ x, \alpha < x < \beta \\ 0, x > \beta \end{cases}$		
	$0, \qquad x > \beta$,
	c) Let $G = \{1, -1, i, -i\}$ be a multiplicative group. Find the order of every	L1	2M
	element.		
	d) State Generating Function?	L1	2M
	e) Define complete bipartite graph.	L2	2M
2.	(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I a) Find the Lordense function $f(t) = \int_{-\infty}^{\infty} \frac{1 - \cos at}{2}$		
2.	a) Find the Laplace transform of the function $f(t) = \frac{1 - \cos at}{t}$	L1	5M
	b) Find the Laplace transform of $f(t) = \int_{0}^{t} e^{-4t} \cos t dt$ by using L.T of integrals	L3	5M
	integrals. OR		
3.	By using Laplace transform technique, solve the D. E. $(D^2 + 5D + 6)y = 5e^t$,	L3	10N
	where $y(0) = 2, y'(0) = 1.$		
	UNIT-II		
4.	a) Find the Fourier sine transform of $e^{- x }$. Hence show that		
		L1	5M
	$\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx = \frac{\pi}{2} e^{-m}, m > 0.$		0111
	$\int (x, 0 < x < 1)$		
	b) Obtain the Fourier sine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$	L3	5M
	0, x > 2		0112
	UR		
5.	Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that	T 1	101
· •	x and the value of the unit cosine transforms of $f(x) = x$ and deduce that x	L1	10N

R18

Page 1 of 2

Q.P. Code: 18HS0832

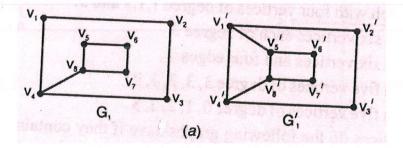
- 6. Define group and an abelian group. Prove that the set Z of all integers with the L1 10M binary operation * is defined as a * b = a + b + 1, $\forall a, b \in Z$ is an abelian group.
 - OR
- 7. a) On the set Q of all rational number operation * is defined by L1 5M a*b=a+b-ab. Show that this operation Q forms a commutative monoid.
 - b) In a group G for $a, b \in G$, O(a) = 5, $b \neq e$ and $a b a^{-1} = b^2$. Show that L1 5M O(b) = 31.

UNIT-IV

8. a) How many integral solutions are there to where $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ L3 5M (i) Each $x_i \ge 2$? (ii) Each $x_i > 2$.

b) In how many ways can the letters of the word COMPUTER be arranged? L3 How many of them begin with C and end with R? how many of them do not begin with C but end with R?

OR


- 9. a) Applying pigeon hole principle show that of any 14 integers are selected from L3 5M the set S = {1,2,3,....,25 } there are at least two whose seem is 26. Also write a statement that generalizes this result.
 - b) Solve the RR $a_{n+2} 2a_{n+1} + a_n = 2^n$ with initial condition $a_0 = 2$ and $a_1 = 1$. L1 5M UNIT-V
- 10. a) Show that the maximum number of edges in a simple graph with *n* vertices is L1 5M $\frac{n(n-1)}{2}$.
 - b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of L1 5M degree 3. Find the number of vertices in G?.

OR

L4 5M

5M

b) Is the following pairs of graphs are isomorphic or not? L4 5M

11. a) Explain any 5 graphs with examples.

*** END ***